Factoriality, type classification and fullness for free product von Neumann algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factoriality of q-Gaussian von Neumann algebras

We prove that the von Neumann algebras generated by n q-Gaussian elements, are factors for n > 2.

متن کامل

Factoriality of Bożejko–speicher Von Neumann Algebras

We study the von Neumann algebra generated byq–deformed Gaussian elements li + l∗i where operators li fulfill the q–deformed canonical commutation relations lil∗j − ql ∗ j li = δij for −1 < q < 1. We show that if the number of generators is finite, greater than some constant depending on q, it is a II1 factor which does not have the property Γ . Our technique can be used for proving factorialit...

متن کامل

Factoriality and the Connes Invariant T (m) for Free Products of Von Neumann Algebras

Sufficient conditions for factoriality are given for free products of von Neumann algebras with respect to states that are not necessarily traces. The Connes T–invariant of the free product algebra is found, which has implications for the type of the algebra. Roughly speaking, the free product of von Neumann algebras with respect to states, one of which is not a trace, is a type III factor. Int...

متن کامل

A Murray-von Neumann Type Classification of C∗-algebras

We define type A, type B, type C as well as C∗-semi-finite C∗-algebras. It is shown that a von Neumann algebra is a type A, type B, type C or C∗-semi-finite C∗-algebra if and only if it is, respectively, a type I, type II, type III or semi-finite von Neumann algebra. Moreover, any type I C∗-algebra is of type A (actually, type A coincides with the discreteness as defined by Peligrad and Zsidó),...

متن کامل

Free Probability, Free Entropy and Applications to von Neumann Algebras

1. Non-commutative probability spaces In general, a non-commutative probability space is a pair (A, τ), where A is a unital algebra (over the field of complex numbers C) and τ a linear functional with τ(I) = 1, where I is the identity of A. Elements of A are called random variables. Since positivity is a key concept in (classical) probability theory, this can be captured by assuming that A is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2011

ISSN: 0001-8708

DOI: 10.1016/j.aim.2011.07.017